
Published as a conference paper at ICLR 2023

AUTOGT: AUTOMATED GRAPH TRANSFORMER ARCHI-
TECTURE SEARCH

Zizhao Zhang1, Xin Wang1,2∗, Chaoyu Guan1, Ziwei Zhang1, Haoyang Li1, Wenwu Zhu1∗
1Department of Computer Science and Technology, Tsinghua University
2THU-Bosch JCML Center, Tsinghua University
{zzz22, guancy19, lihy18}@mails.tsinghua.edu.cn
{xin_wang, zwzhang, wwzhu}@tsinghua.edu.cn

ABSTRACT

Although Transformer architectures have been successfully applied to graph data
with the advent of Graph Transformer, the current design of Graph Transformers
still heavily relies on human labor and expertise knowledge to decide on proper
neural architectures and suitable graph encoding strategies at each Transformer
layer. In literature, there have been some works on the automated design of Trans-
formers focusing on non-graph data such as texts and images without considering
graph encoding strategies, which fail to handle the non-euclidean graph data. In
this paper, we study the problem of automated graph Transformers, for the first
time. However, solving these problems poses the following challenges: i) how can
we design a unified search space for graph Transformer, and ii) how to deal with the
coupling relations between Transformer architectures and the graph encodings of
each Transformer layer. To address these challenges, we propose Automated Graph
Transformer (AutoGT), a neural architecture search framework that can automati-
cally discover the optimal graph Transformer architectures by joint optimization
of Transformer architecture and graph encoding strategies. Specifically, we first
propose a unified graph Transformer formulation that can represent most state-of-
the-art graph Transformer architectures. Based upon the unified formulation, we
further design the graph Transformer search space that includes both candidate
architectures and various graph encodings. To handle the coupling relations, we
propose a novel encoding-aware performance estimation strategy by gradually
training and splitting the supernets according to the correlations between graph
encodings and architectures. The proposed strategy can provide a more consistent
and fine-grained performance prediction when evaluating the jointly optimized
graph encodings and architectures. Extensive experiments and ablation studies
show that our proposed AutoGT gains sufficient improvement over state-of-the-art
hand-crafted baselines on all datasets, demonstrating its effectiveness and wide
applicability.

1 INTRODUCTION

Recently, designing Transformer for graph data has attracted intensive research interests (Dwivedi &
Bresson, 2020; Ying et al., 2021). As a powerful architecture to extract meaningful information from
relational data, the graph Transformers have been successfully applied in natural language process-
ing (Zhang & Zhang, 2020; Cai & Lam, 2020; Wang et al., 2023), social networks (Hu et al., 2020b),
chemistry (Chen et al., 2019; Rong et al., 2020), recommendation (Xia et al., 2021) etc. However,
developing a state-of-the-art graph Transformer for downstream tasks is still challenging because it
heavily relies on the tedious trial-and-error hand-crafted human design, including determining the
best Transformer architecture and the choices of proper graph encoding strategies to utilize, etc. In
addition, the inefficient hand-crafted design will also inevitably introduce human bias, which leads
to sub-optimal solutions for developing graph transformers. In literature, there have been works on
automatically searching for the architectures of Transformer, which are designed specifically for data

∗Corresponding authors

1

Published as a conference paper at ICLR 2023

in Natural Language Processing (Xu et al., 2021) and Computer Vision (Chen et al., 2021b). These
works only focus on non-graph data without considering the graph encoding strategies which are
shown to be very important in capturing graph information (Min et al., 2022a), thus failing to handle
graph data with non-euclidean properties.

In this paper, we study the problem of automated graph Transformers for the first time. However,
previous work (Min et al., 2022a) has demonstrated that a good graph Transformer architecture is
expected to not only select proper neural architectures for every layer but also utilize appropriate
encoding strategies capable of capturing various meaningful graph structure information to boost
graph Transformer performance. Therefore, there exist two critical challenges for automated graph
Transformers:

• How to design a unified search space appropriate for graph Transformer? A good graph
Transformer needs to handle the non-euclidean graph data, requiring explicit consideration of node
relations within the search space, where the architectures, as well as the encoding strategies, can be
incorporated simultaneously.

• How to conduct encoding-aware architecture search strategy to tackle the coupling relations
between Transformer architectures and graph encoding? Although one simple solution may
resort to a one-shot formulation enabling efficient searching in vanilla Transformer operation space
which can change its functionality during supernet training, the graph encoding strategies differ
from vanilla Transformer in containing certain meanings related to structure information. How to
train an encoding-aware supernet specifically designed for graphs is challenging.

To address these challenges, we propose Automated Graph Transformer, AutoGT1, a novel neural
architecture search method for graph Transformer. In particular, we propose a unified graph Trans-
former formulation to cover most of the state-of-the-art graph Transformer architectures in our search
space. Besides the general search space of the Transformer with hidden dimension, feed-forward
dimension, number of attention head, attention head dimension, and number of layers, our unified
search space introduces two new kinds of augmentation strategies to attain graph information: node
attribution augmentation and attention map augmentation. To handle the coupling relations, we
further propose a novel encoding-aware performance estimation strategy tailored for graphs. As
the encoding strategy and architecture have strong coupling relations when generating results, our
AutoGT split the supernet based on the important encoding strategy during evaluation to handle the
coupling relations. As such, we propose to gradually train and split the supernets according to the
most coupled augmentation, attention map augmentation, using various supernets to evaluate different
architectures in our unified searching space, which can provide a more consistent and fine-grained
performance prediction when evaluating the jointly optimized architecture and encoding. In summary,
we made the following contributions:

• We propose Automated Graph Transformer, AutoGT, a novel neural architecture search frame-
work for graph Transformer, which can automatically discover the optimal graph Transformer
architectures for various down-streaming tasks. To the best of our knowledge, AutoGT is the first
automated graph Transformer framework.

• We design a unified search space containing both the Transformer architectures and the essential
graph encoding strategies, covering most of the state-of-the-art graph Transformer, which can lead
to global optimal for structure information excavation and node information retrieval.

• We propose an encoding-aware performance estimation strategy tailored for graphs to provide a
more accurate and consistent performance prediction without bringing heavier computation costs.
The encoding strategy and the Transformer architecture are jointly optimized to discover the best
graph Transformers.

• The extensive experiments show that our proposed AutoGT model can significantly outperform the
state-of-the-art baselines on graph classification tasks over several datasets with different scales.

2 RELATED WORK

The Graph Transformer. Graph Transformer, as a category of neural networks, enables Transformer
to handle graph data (Min et al., 2022a). Several works (Dwivedi & Bresson, 2020; Ying et al.,

1Our codes are publicly available at https://github.com/SandMartex/AutoGT

2

Published as a conference paper at ICLR 2023

2021; Hussain et al., 2021; Zhang et al., 2020; Kreuzer et al., 2021; Shi et al., 2021) propose to
pre-calculate some node positional encoding from graph structure and add them to the node attributes
after a linear or embedding layer. Some works (Dwivedi & Bresson, 2020; Zhao et al., 2021; Ying
et al., 2021; Khoo et al., 2020) also propose to add manually designed graph structural information
into the attention matrix in Transformer layers. Others (Yao et al., 2020; Min et al., 2022b) explore
the mask mechanism in the attention matrix, masking the influence of non-neighbor nodes. In
particular, UniMP (Shi et al., 2021) achieves new state-of-the-art results on OGB (Hu et al., 2020a)
datasets, Graphormer (Ying et al., 2021) won first place in KDD Cup Challenge on Large-SCale
graph classification by encoding various information about graph structures into graph Transformer.

Neural Architecture Search. Neural architecture search has drawn increasing attention in the past
few years (Elsken et al., 2019; Zoph & Le, 2017; Ma et al., 2018; Pham et al., 2018; Wei et al., 2021;
Cai et al., 2022; Guan et al.; 2021b; 2022; Qin et al., 2022a;b; Zhang et al., 2021; ?). There are
many efforts to automate the design of Transformers. (So et al., 2019) propose the first automated
framework for Transformer in neural machine translation tasks. AutoTrans (Zhu et al., 2021) improves
the search efficiency of the NLP Transformer through a one-shot supernet training. NAS-BERT (Xu
et al., 2021) further leverages the neural architecture search for big language model distillation and
compression. AutoFormer (Chen et al., 2021b) migrates the automation of the Transformer for
vision tasks, where they utilize weight-entanglement to improve the consistency of the supernet
training. GLiT (Chen et al., 2021a) proposes to search both global and local attention for the Vision
Transformer using a hierarchical evolutionary search algorithm. (Chen et al., 2021c) further propose
to evolve the search space of the Vision Transformer to solve the exponential explosion problems.

3 AUTOMATED GRAPH TRANSFORMER ARCHITECTURE SEARCH (AUTOGT)

To automatically design graph Transformer architectures, we first unify the formulation of current
graph Transformers in Section 3.1. Based on the unified formulation, we design the search space
tailored for the graph Transformers in Section 3.2. We propose a novel encoding-aware performance
estimation strategy in Section 3.3, and introduce our evolutionary search strategy in Section 3.4. The
whole algorithm is presented by Figure 2.

3.1 THE UNIFIED GRAPH TRANSFORMER FRAMEWORK

Graph Specific Encoding
Graphormer

Transformer Architecture
Feed ForwardMulti-Head Attention

Add & Norm

Input
Embed-

ding

Value

Key

Query

Linear
Linear

M
at-M

ul
&

 Scale

Multi-Head
Attention

SoftMax,
MatMul & Linear

Attention
Output

Embedding

Linear

Embedding

Linear

Embedding

Output
Embed-

ding

Centrality
Encoding

Attention Map
Augmentations

Add Node
Attribution
Augmenta-

tions

Laplacian
Eigenvector

SVD-based
Positional
Encodings

Spatial
Encoding

Edge
Encoding

Proximity-
Enhanced

Multi-Head
Attention

Attention
Mask

Add

Add or Not

Add or NotAdd or Not

Add or
Not

Figure 1: The unified graph Transformer search space. It
consists of the Transformer architecture space and the graph
specific encoding space. The Transformer architecture search
space is detailed in Table 1. The graph specific encoding search
space is to decide whether each encoding strategy should be
adopted or not and the mask threshold for the attention mask.

Current representative graph Trans-
former designs can be regarded
as improving the input and atten-
tion map in Transformer architec-
ture through various graph encod-
ing strategies. We first introduce the
basic Transformer architecture and
then show how to combine various
graph encoding strategies.

Let G = (V,E) denote a graph
where V = {v1, v2, · · ·, vn} rep-
resents the set of nodes and E =
{e1, e2, · · ·, em} represents the set
of edges, and denote n = |V | and
m = |E| as the number of nodes
and edges, respectively. Let vi, i ∈
{1, ..., n} represents the features of
node vi, and ej , j ∈ {1, ...,m} rep-
resents the features of edge ej .

3.1.1 BASIC TRANSFORMER

As shown in Figure 1, a basic Transformer consists of several stacked blocks, with each block
containing two modules, namely the multi-head attention (MHA) module and the feed-forward
network (FFN) module.

3

Published as a conference paper at ICLR 2023

At block l, the node representation H(l) ∈ Rn×d first goes through the MHA module to interact with
each other and pass information through self-attention:

A
(l)
h = softmax

(
Q

(l)
h K

(l)
h

T

√
dk

)
,O

(l)
h = A

(l)
h V

(l)
h , (1)

where A
(l)
h ∈ Rn×n is the message passing matrix, O(l)

h is the output of the self-attention mech-
anism of the hth attention head, h = 1, 2, · · ·, Head, Head is the number of attention heads, and
K

(l)
h ,Q

(l)
h ,V

(l)
h ∈ Rn×dk are the key, query, value calculated as:

K
(l)
h ,= H(l)W

(l)
k,h,Q

(l)
h = H(l)W

(l)
q,h,V

(l)
h = H(l)W

(l)
v,h, (2)

where W(l)
k,h,W

(l)
q,h,W

(l)
v,h ∈ Rd×dk are learnable parameters. Then, the representations of different

heads are concatenated and further transformed as:

O(l) = (O
(l)
1 ◦O(l)

2 ◦ ... ◦O(l)
Head)W

(l)
O +H(l), (3)

where W
(l)
O ∈ R(dk∗Head)×dt is the parameter and O(l) is the multi-head result. Then, the attended

representation will go through the FFN module to further refine the information of each node:

H(l+1) = σ(O(l)W
(l)
1)W

(l)
2 , (4)

where O(l) ∈ Rn×dt is the output, W(l)
1 ∈ Rdk×dh , W(l)

2 ∈ Rdh×d are weight matrices.

As for the input of the first block, we concatenate all the node features H(0) = [v1, ...,vn]. After L
blocks, we obtain the final representation of each node H(L).

3.1.2 GRAPH ENCODING STRATEGY

From Section 3.1.1, we can observe that directly using the basic Transformer on graphs can only
process node attributes, ignoring important edge attributes and graph topology information in the
graph. To make the Transformer architecture aware of the graph structure, several works resort to
various graph encoding strategies, which can be divided into two kinds of categories: node attribution
augmentation and attention map augmentation.

The node attribution augmentations take the whole graph G as input and generate the topology-aware
features Encnode(G) for each node to directly improve the node representations:

H(l)
aug = H(l) + Encnode(G). (5)

On the other hand, the attention map augmentations generate an additional attention map Encmap(G),
which represents the relationships of any two nodes and improves the attention map generated by
self-attention in Eq equation 1 as:

A
(l)
h,aug = softmax

(
Q

(l)
h K

(l)
h

T

√
d

+ Encmap(G)

)
. (6)

Combining node attribution augmentations and attention map augmentations together, our proposed
framework is as follows:

H(l+1) = σ

(
Concat

(
softmax

(
H

(l)
augW

(l)
q,h(H

(l)
augW

(l)
k,h)

T

√
dk

+ Encmap(G)

)
H(l)

augW
(l)
v,h

)
W

(l)
1

)
W

(l)
2 .

(7)
where H

(l)
aug = H(l) + Encnode(G).

3.2 THE GRAPH TRANSFORMER SEARCH SPACE

Based on the unified graph Transformer formulation, we propose our unified search space design,
which can be decomposed into two parts, i.e., Transformer Architecture space and graph encoding
space. Figure 1 shows the unified graph Transformer search space.

4

Published as a conference paper at ICLR 2023

Input input embedding KQV key query value #Heads number of heads
Mid intermediate embedding FFN feed forward network embedding Mask attention mask threshold
CE centrality encoding SE spatial encoding EE edge encoding
LPE Laplacian eigenvector SVD SVD-based positional encoding PMA proximity enhanced attention

Encoding-Aware Supernet Training

Layer
Mask

CE

LPE

SVD

SE

EE

PMA

…

…
Layer
Input

KQV

#Heads

Mid

FFN

Mask

LPE

CE

SE

PMA

EE

SVD

Split

Evol
Search

Layer
Input

KQV

Heads

Mid

FFN

Split

Layer
Input

KQV

#Heads

Mid

FFN

Layer
Mask

CE

SVD

LPE

SE

PMA

EE

Layer

…

Layer

…
…

…

…

Layer
Input

KQV

#Heads

Mid

FFN

Mask

CE

SE

EE

SVD

Figure 2: The framework of our work. Firstly, we construct the search space for each layer, consisting
of the Transformer architecture space (above) and the graph encoding strategy space (below). Then,
we carry out our encoding-aware supernet training method in two stages: before splitting, we train a
supernet by randomly sampling architectures from the search space, while after splitting, we train
multiple subnets (inheriting the weights from the supernet) by randomly sampling architectures with
fixed attention map augmentation strategies (except for the attention mask). Finally, we conduct an
evolutionary search based on the subnets and obtain our final architecture and results.

3.2.1 TRANSFORMER ARCHITECTURE SPACE

Following Section 3.1.1, we automate five key architecture components for graph Transformer as
follows: the number of encoder layers L, the dimension d, the intermediate dimension dt, the
hidden dimension dh, the number of attention heads Head, and the attention head dimension dk in
graph Transformer. Notice that these five components already cover the most important designs for
Transformer architectures.

A suitable search space should be not only expressive enough to allow powerful architectures, but
also compact enough to enable efficient searches. With this principle in mind, we propose two search
spaces for these components with different size ranges. Table 1 gives the detailed search space for
these two spaces.

3.2.2 GRAPH ENCODING SPACE

To exploit the potential of the graph encoding strategies, we further determine whether and which
graph encoding strategies to use for each layer of the graph Transformer. Specifically, we explore the
node attribution augmentations encoding and attention map augmentations encoding as below.

Node Attribution Augmentations:

• Centrality Encoding (Ying et al., 2021). Use two node embeddings with the same size represent-
ing the in-degree and the out-degree of nodes, i.e.,

h
(l)
i = x

(l)
i + z−

deg−(vi)
+ z+

deg−(vi)
(8)

where h
(l)
i is the input embedding in layer l, xi is the input attribution of node i in layer l, and

z− and z+ are the embedding generated by the in-degree and out-degree.
• Laplacian Eigenvector (Dwivedi & Bresson, 2020). Conducting spectral decomposition of the

graph Laplacian matrix:
UTΛU = I−D−1/2AGD−1/2 (9)

5

Published as a conference paper at ICLR 2023

Table 1: The Transformer Architecture Search Space for AutoGTbase and AutoGT.

AutoGTbase AutoGT
Choices Supernet Size Choices Supernet Size

#Layers {2,3,4} 4 {5,6,7,8} 8
Input Dimension d {24,28,32} 32 {96,112,128} 128

Intermediate Dimension dt {24,28,32} 32 {96,112,128} 128
Hidden Dimension dh {24,28,32} 32 {96,112,128} 128

#Attention Heads {2,3,4} 4 {6,7,8} 8
Attention Head Dimension dk {6,8} 8 {12,14,16} 16

where AG is the adjacency matrix of graph G, D is the diagonal degree matrix, and U and Λ are
the eigenvectors and eigenvalues, respectively. We only select the eigenvectors of the k smallest
non-zero eigenvalues as the final embedding and concatenate them to the input node attribute
matrix for each layer.

• SVD-based Positional Encoding (Hussain et al., 2021). Conducting singular value decomposition
to the graph adjacency matrix:

AG SVD
≈ UΣVT = (U

√
Σ) · (V

√
Σ)T = ÛV̂T (10)

where U,V ∈ Rn×r contains the left and right singular vectors of the top r singular values in
the diagonal matrix Σ ∈ Rr×r. Without loss of generality, we only choose Û as final embedding
since they are highly correlated for symmetric graphs (with differences in signs, to be specific).
Similar to Laplacian eigenvector, we concatenate it to input node attribute matrix for each layer.

Attention Map Augmentations Space:

• Spatial Encoding (Ying et al., 2021). Spatial encoding is added to the attention result before
softmax:

Aij =
(hiWQ)(hjWK)T√

dk
+ bϕ(vi,vj) (11)

where ϕ(vi, vj) is the length of the shortest path from vi to vj , and b ∈ R is a weight parameter
generated by ϕ(vi, vj).

• Edge Encoding (Ying et al., 2021). Edge encoding is added to the attention result before softmax:

Aij =
(hiWQ)(hjWK)T√

dk
+

1

N

N∑
n=1

xen(w
E
n)T (12)

where xen is the feature of the n-th edge en on the shortest path between vi and vj , and wE
n is the

n-th learnable embedding vector.

• Proximity-Enhanced Attention (Zhao et al., 2021). Proximity-Enhanced Attention is added to
the attention result before softmax:

Aij =
(hiWQ)(hjWK)T√

dk
+ ϕT

ijb (13)

where b ∈ RM×1 is a learnable parameter, ϕij = Concat(Φm(vi, vj)|m ∈ 0, 1, · · · ,M−1) is the
structural encoding generated from: Φm(vi, vj) = Ãm[i, j], where Ã = Norm(A+ I) represents
the normalized adjacency matrix. Thus the augmentation denotes the reachable probabilities
between nodes.

• Attention Mask (Min et al., 2022b; Yao et al., 2020). Attention Mask is added to the attention
result before softmax:

Aij =
(hiWQ)(hjWK)T√

dk
+Maskm(vi, vj) (14)

where m is the mask threshold, Maskm(vi, vj) depends on the relationship between m and
ϕ(vi, vj), i.e. the shortest path length between vi and vj . When m ≥ ϕ(vi, vj), Maskm(vi, vj) = 0.
Otherwise, Maskm(vi, vj) is −∞, masking the corresponding attention in practical terms.

6

Published as a conference paper at ICLR 2023

Table 2: Comparison of our proposed unified framework with state-of-the-art graph Transformer
models. CE, LPE, SVD, SE, EE, PMA, Mask denote Centrality Encoding, Laplacian Eigenvector,
SVD-based Positional Encoding, Spatial Encoding, Edge Encoding, Proximity-Enhanced Attention,
and Attention Mask respectively.

CE LPE SVD SE EE PMA Mask

EGT (Hussain et al., 2021) ✓
Gophormer (Zhao et al., 2021) ✓

Graph Trans (Dwivedi & Bresson, 2020) ✓ ✓
Graphormer (Ying et al., 2021) ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓

3.3 ENCODING-AWARE SUPERNET TRAINING

We next introduce our proposed encoding-aware performance estimation strategy for efficient training.

Similar to general NAS problems, the graph Transformer architecture search can be formulated as a
bi-level optimization problem:

a∗ = argmaxa∈AAccval(W
∗(a), a), s.t.W∗(a) = argminWLtrain(W, a), (15)

where a ∈ A is the architecture in the search space A, Accval stands for the validation accuracy, W
represents the learnable weights, and a∗ and W∗(a) denotes the optimal architecture and the optimal
weights for the architecture a.

Following one-shot NAS methods (Liu et al., 2019; Pham et al., 2018), we encode all candidate
architectures in the search space into a supernet and transform Eq. equation 15 into a two-step
optimization (Guo et al., 2020):

a∗ = argmaxa∈AAccval(W
∗, a), W∗ = argminWEa∈ALtrain(W, a), (16)

where W denotes the shared learnable weights in the supernet with its optimal value W∗ for all the
architectures in the search space.

To further improve the optimization efficiency of the supernet training, we leverage weight entan-
glement (Guan et al., 2021a; Chen et al., 2021b; Guo et al., 2020) to deeply share the weights
of architectures with different hidden sizes. Specifically, for every architecture sampled from the
supernet, we use a 0-1 mask to discard unnecessary hidden channels instead of maintaining a new set
of weights. In this way, the number of parameters in the supernet will remain the same as the largest
(i.e., with the most parameters) model in the search space, thus leading to efficient optimization.

Although this strategy is fast and convenient, using the same supernet parameters W for all archi-
tectures will decrease the consistency between the estimation of the supernet and the ground-truth
architecture performance. To improve the consistency and accuracy of supernet, we propose an
encoding-aware supernet training strategy. Based on the contribution of coupling of different encoding
strategies, we split the search space into different sub-spaces based on whether adopting three kinds
of attention map augmentation strategies: spatial encoding, edge encoding, and proximity-enhanced
attention. Therefore, there are 23 = 8 supernets.

To be specific, we first train a single supernet for certain epochs and split the supernet into 8 subnets
according to the sub-spaces afterward. Then, we continuously train the weights in each subnet Wi

by only sampling the architecture from the corresponding subspace Ai. Experiments to support such
a design are provided in Section 4.

3.4 EVOLUTIONARY SEARCH

Similar to other NAS research, our proposed graph transformer search space is too large to enumerate.
Therefore, we propose to utilize the evolutionary algorithm to efficiently explore the search space to
obtain the architecture with optimal accuracy on the validation dataset.

Specifically, we first maintain a population consisting of T architectures by random sample. Then,
we evolve the architectures through our designed mutation and crossover operations. In the mutation
operation, we randomly choose from the top-k architectures with the highest performance in the

7

Published as a conference paper at ICLR 2023

Table 3: Comparisons of AutoGT against state-of-the-art hand-crafted baselines. We report the
average accuracy (%) and the standard deviation on all the datasets. Out-of-time (OOT) indicates the
method cannot produce results in 1 GPU day.

Dataset COX2_MD BZR_MD PTC_FM DHFR_MD PROTEINS DBLP

GIN 45.8214.35 59.6814.65 57.878.86 62.888.26 73.764.61 91.180.42

DGCNN 54.8118.51 62.7420.59 62.173.62 63.895.91 72.683.75 91.570.54

DiffPool 51.4514.28 65.0114.74 60.165.87 61.069.42 73.313.75 OOT
GraphSAGE 49.5912.80 57.4313.50 64.173.28 66.922.35 67.196.97 51.010.02

Graphormer 56.3915.03 63.9412.58 64.887.58 64.887.58 75.293.10 89.362.31

GT(ours) 54.4416.84 63.3311.67 64.182.60 65.685.64 73.943.78 90.671.01

AutoGT(ours) 59.7223.26 65.9210.00 65.603.71 68.225.02 77.173.40 91.660.79

Table 4: Comparisons of AutoGT against state-of-the-art hand-crafted baselines. We report the area
under the curve (AUC) [%] and the standard deviation on all the datasets.

Dataset OGBG-MolHIV OGBG-MolBACE OGBG-MolBBBP

GIN 71.112.57 70.424.78 63.371.81

DGCNN 69.972.16 75.622.64 60.921.78

DiffPool 74.581.71 73.874.50 66.686.08

GraphSAGE 67.823.67 72.911.24 64.193.50

Graphormer 71.892.66 76.421.67 66.520.74

AutoGT(ours) 74.951.02 76.701.42 67.291.46

last generation and change its architecture choices with probabilities. In the crossover operation,
we randomly select pairs of architectures with the same number of layers from the remaining
architectures, and randomly switch their architecture choices.

4 EXPERIMENTS

In this section, we present detailed experimental results as well as the ablation studies to empirically
show the effectiveness of our proposed AutoGT.

Datasets and Baselines. We first consider six graph classification datasets from Deep Graph
Kernels Benchmark((Yanardag & Vishwanathan, 2015)) and TUDataset (Morris et al., 2020),
namely COX2_MD, BZR_MD, PTC_FM, DHFR_MD, PROTEINS, and DBLP. We also adopt
three datasets from Open Graph Benchmark (OGB) (Hu et al., 2020a), including OGBG-MolHIV,
OGBG-MolBACE, and OGBG-MolBBBP. The task is to predict the label of each graph using
node/edge attributes and graph structures. The detailed statistics of the datasets are shown in Table 6
in the appendix.

We compare AutoGT with state-of-the-art hand-crafted baselines, including GIN (Xu et al., 2019),
DGCNN (Zhang et al., 2018), DiffPool (Ying et al., 2018), GraphSAGE (Hamilton et al., 2017),
and Graphormer (Ying et al., 2021). Notice that Graphormer is a state-of-the-art graph Transformer
architecture that won first place in the graph classification task of KDD Cup 2021 (OGB-LSC).

For all the datasets, we follow Errica et al., (Errica et al., 2020) to utilize 10-fold cross-validation
for all the baselines and our proposed method. All the hyper-parameters and training strategies of
baselines are implemented according to the publicly available codes (Errica et al., 2020)2.

Implementation Details. Recall that our proposed architecture space has two variants, a larger
AutoGT(L = 8, d = 128) and a smaller AutoGTbase(L = 4, d = 32). In our experiments, we
adopt the smaller search space for five relatively small datasets, i.e., all datasets except DBLP, and the
larger search space for DBLP. We use the Adam optimizer, and the learning rate is 3e− 4. For the
smaller/larger datasets, we set the number of iterations to split (i.e., Ts in Algorithm 1 in Appendix) as
50/6 and the maximum number of iterations (i.e., Tm in Algorithm 1) as 200/50. The batch size is 128.
The hyperparameters of these baselines are kept consistent with our method for a fair comparison.

2https://github.com/diningphil/gnn-comparison

8

Published as a conference paper at ICLR 2023

We also report the results of our unified framework in Section 3.1, i.e. mixing all the encodings in
our search space with the supernet but without the search part, denoted as GT(Graph Transformer).

Experimental Results. We report the results in Table 3. We can make the following observations.
First, AutoGT consistently outperforms all the existing hand-crafted methods on all datasets, demon-
strating the effectiveness of our proposed method. Graphormer shows remarkable performance and
achieves the second-best results on three datasets, showing the great potential of Transformer archi-
tectures in processing graph data. However, since Graphormer is a manually designed architecture
and cannot adapt to different datasets, it fails to be as effective as our proposed automatic solution.
Lastly, GT, our proposed unified framework, fails to show strong performance in most cases. The
results indicate that simply mixing different graph Transformers cannot produce satisfactory results,
demonstrating the importance of searching for effective architectures to handle different datasets.

We also conduct experiments on Open Graph Benchmark (OGB) (Hu et al., 2020a). On the three
binary classification datasets of OGB, we report the AUC score of our method and all the baselines.
The results also show that our method outperforms all the hand-crafted baselines on these datasets.

Time Cost. We further show the time comparison of AutoGT with hand-crafted graph transformer
Graphormer. On OGBG-MolHIV dataset, both Graphormer and AutoGT cost 2 minutes for one
epoch on single GPU. The default Graphormer is trained for 300 epochs, which costs 10 hours to
obtain the result of one random seed. For AutoGT, we train shared supernet for 50 epochs, 8 supernets
inherit, and continue to train for 150 epochs. So the training process costs totally 1250 epochs with
40 hours. And on the evolutionary search stage, we evaluate 2000 architectures’ inheriting weight
performances, which costs about 900 epochs with 30 hours. In summary, the total time cost for
AutoGT is only 7 times total time cost for a hand-crafted graph transformer Graphormer.

Ablation Studies. We verify the effectiveness of the proposed encoding-aware supernet training
strategy by reporting the results on the PROTEINS dataset, while other datasets show similar patterns.

To show the importance of considering encoding strategies when training the supernet, we design
two variants of AutoGT and compare the results:

• One-Shot. We only train a single supernet and use it to evaluate all the architectures.
• Positional-Aware. We also split up the supernet into 8 subnets but based on three node attribute

augmentations instead of the three attention map augmentation as in AutoGT.

Table 5: The ablation study on the effec-
tiveness of the proposed encoding-aware
supernet training strategy. We report the
average accuracy[%] with the variance
on PROTEINS.

Method Accuracy

One-Shot 75.923.10

Positional-Aware 76.193.42

AutoGT 77.173.40

The results of AutoGT and two variants are shown in Ta-
ble 5. From the table, we can observe that, compared with
the result of one-shot NAS, positional-aware and AutoGT
methods achieve different levels of improvement. Further
comparing the accuracy gain, we find that the result of
AutoGT (1.25%) is nearly 5 times larger than the result
of positional-aware (0.27%), even though both methods
adopt 8 subnets. We attribute the significant difference
in accuracy gain from supernet splitting to the different
degrees of coupling of graph encoding strategies with the
Transformer architecture. For example, the dimensional-
ity of node attribution augmentation is the same as the number of nodes, while the attention map
augmentation has a quadratic dimensionality, resulting in different coupling degrees. Our proposed
encoding-aware performance estimation based on three attention map augmentation strategies is
shown to be effective in practice.

5 CONCLUSION

In this paper, we propose AutoGT, a neural architecture search framework for graph Transformers. We
design a search space tailored for graph Transformer architectures, and an encoding-aware supernet
training strategy to provide reliable graph Transformer supernets considering various graph encoding
strategies. Our method integrates the existing graph Transformer into a unified framework, where
different Transformer encodings can enhance each other. Extensive experiments on six datasets
demonstrate that our proposed AutoGT consistently outperforms state-of-the-art baselines on all
datasets, demonstrating its strength on various graph tasks.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

This work was supported in part by the National Key Research and Development Program of China
No. 2020AAA0106300, National Natural Science Foundation of China (No. 62250008, 62222209,
62102222, 61936011, 62206149), China National Postdoctoral Program for Innovative Talents No.
BX20220185, and China Postdoctoral Science Foundation No. 2022M711813, Tsinghua GuoQiang
Research Center Grant 2020GQG1014 and partially funded by THU-Bosch JCML Center. All
opinions, findings, and conclusions in this paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES

Deng Cai and Wai Lam. Graph transformer for graph-to-sequence learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pp. 7464–7471, 2020.

Jie Cai, Xin Wang, Chaoyu Guan, Yateng Tang, Jin Xu, Bin Zhong, and Wenwu Zhu. Multimodal con-
tinual graph learning with neural architecture search. In Proceedings of the ACM Web Conference
2022, pp. 1292–1300, 2022.

Benson Chen, Regina Barzilay, and T. Jaakkola. Path-augmented graph transformer network. ArXiv,
abs/1905.12712, 2019.

Boyu Chen, Peixia Li, Chuming Li, Baopu Li, Lei Bai, Chen Lin, Ming Sun, Junjie Yan, and Wanli
Ouyang. Glit: Neural architecture search for global and local image transformer. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12–21, October 2021a.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
for visual recognition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 12270–12280, October 2021b.

Minghao Chen, Kan Wu, Bolin Ni, Houwen Peng, Bei Liu, Jianlong Fu, Hongyang Chao, and
Haibin Ling. Searching the search space of vision transformer. Advances in Neural Information
Processing Systems, 34:8714–8726, 2021c.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural
networks for graph classification. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Chaoyu Guan, Ziwei Zhang, Haoyang Li, Heng Chang, Zeyang Zhang, Yijian Qin, Jiyan Jiang, Xin
Wang, and Wenwu Zhu. Autogl: A library for automated graph learning. In ICLR 2021 Workshop
on Geometrical and Topological Representation Learning.

Chaoyu Guan, Yijian Qin, Zhikun Wei, Zeyang Zhang, Zizhao Zhang, Xin Wang, and Wenwu Zhu.
One-shot neural channel search: What works and what’s next. In CVPR Workshop on NAS, 2021a.

Chaoyu Guan, Xin Wang, and Wenwu Zhu. Autoattend: Automated attention representation search.
In International conference on machine learning, pp. 3864–3874. PMLR, 2021b.

Chaoyu Guan, Xin Wang, Hong Chen, Ziwei Zhang, and Wenwu Zhu. Large-scale graph neural
architecture search. In International Conference on Machine Learning, pp. 7968–7981. PMLR,
2022.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI, pp.
544–560, 2020.

10

Published as a conference paper at ICLR 2023

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, pp. 2704–2710. ACM /
IW3C2, 2020b.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Edge-augmented graph
transformers: Global self-attention is enough for graphs. arXiv preprint arXiv:2108.03348, 2021.

Ling Min Serena Khoo, Hai Leong Chieu, Zhong Qian, and Jing Jiang. Interpretable rumor detection
in microblogs by attending to user interactions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 8783–8790, 2020.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision
(ECCV), pp. 116–131, 2018.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. arXiv preprint arXiv:2202.08455, 2022a.

Erxue Min, Yu Rong, Tingyang Xu, Yatao Bian, Peilin Zhao, Junzhou Huang, Da Luo, Kangyi
Lin, and Sophia Ananiadou. Masked transformer for neighhourhood-aware click-through rate
prediction. arXiv preprint arXiv:2201.13311, 2022b.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International conference on machine learning, pp. 4095–4104. PMLR,
2018.

Yijian Qin, Xin Wang, Ziwei Zhang, Pengtao Xie, and Wenwu Zhu. Graph neural architecture search
under distribution shifts. In International Conference on Machine Learning, pp. 18083–18095.
PMLR, 2022a.

Yijian Qin, Ziwei Zhang, Xin Wang, Zeyang Zhang, and Wenwu Zhu. Nas-bench-graph: Benchmark-
ing graph neural architecture search. In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022b.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In International
Joint Conference on Artificial Intelligence, pp. 1548–1554. ijcai.org, 2021.

David R. So, Quoc V. Le, and Chen Liang. The evolved transformer. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 5877–5886. PMLR, 2019.

11

Published as a conference paper at ICLR 2023

Xin Wang, Yue Liu, Jiapei Fan, Weigao Wen, Hui Xue, and Wenwu Zhu. Continual few-shot
learning with transformer adaptation and knowledge regularization. In Proceedings of the ACM
Web Conference 2023, 2023.

Lanning Wei, Huan Zhao, Quanming Yao, and Zhiqiang He. Pooling architecture search for graph
classification. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, pp. 2091–2100, 2021.

Lianghao Xia, Chao Huang, Yong Xu, Peng Dai, Xiyue Zhang, Hongsheng Yang, Jian Pei, and
Liefeng Bo. Knowledge-enhanced hierarchical graph transformer network for multi-behavior
recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
4486–4493, 2021.

Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu. Nas-bert: task-agnostic
and adaptive-size bert compression with neural architecture search. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1933–1943, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1365–1374, 2015.

Shaowei Yao, Tianming Wang, and Xiaojun Wan. Heterogeneous graph transformer for graph-to-
sequence learning. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 7145–7154, 2020.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Haopeng Zhang and Jiawei Zhang. Text graph transformer for document classification. In Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2020.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Ziwei Zhang, Xin Wang, and Wenwu Zhu. Automated machine learning on graphs: A survey. In
International Joint Conference on Artificial Intelligence, 2021.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yanfang
Ye. Gophormer: Ego-graph transformer for node classification. arXiv preprint arXiv:2110.13094,
2021.

Wei Zhu, Xiaoling Wang, Yuan Ni, and Guotong Xie. Autotrans: Automating transformer design via
reinforced architecture search. In Natural Language Processing and Chinese Computing: 10th
CCF International Conference, NLPCC 2021, Qingdao, China, October 13–17, 2021, Proceedings,
Part I, pp. 169–182, 2021.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017.

12

Published as a conference paper at ICLR 2023

A TRAINING PROCEDURE

We list the training procedure of our method in Algorithm 1.

Algorithm 1 Our proposed encoding-aware supernet training strategy
1: Initialize. Supernet weights W, subnet weights Wi, search space A, subspace Ai, the split iteration Ts,

the max iteration Tm, a dataset D.
2: for t = 1 : Ts do
3: Sample architecture and encoding strategies a ∈ A.
4: Sample a batch of graph data Ds ⊂ D.
5: Calculate the training loss Ltrain over the sampled data.
6: Update the supernet weights W through gradient descents.
7: end for
8: for i = 1 : n do
9: Let subnet Wi inherit the weights from supernet W.

10: for t = Ts : Tm do
11: Sample architectures and encoding strategies from the subspace a ∈ Ai.
12: Sample a batch of graph data Ds ∈ D.
13: Calculate the training loss Ltrain over the sampled batch.
14: Update the subnet weights Wi through gradient descents.
15: end for
16: end for
17: Output. Subnets with weights Wi.

B DATASET

We provide the statistics of the adopted datasets in Table 6 and Table 7.

Table 6: Statistics of graph classification datasets (precision) used to compare AutoGT with baselines.
We adopt five datasets with relatively small numbers of graphs (upper part) and one dataset with a
larger size (lower part) to demonstrate the efficiency of the proposed AutoGT.

Dataset #Graph #Class #Avg. Nodes #Avg. Edges # Node Feature # Edge Feature

COX2_MD 303 2 26.28 335.12 7 5
BZR_MD 306 2 21.3 225.06 8 5
PTC_FM 349 2 14.11 14.48 18 4
DHFR_MD 393 2 23.87 283.01 7 5
PROTEINS 1,133 2 39.06 72.82 3 0

DBLP 19,456 2 10.48 19.65 41,325 3

Table 7: Statistics of graph classification datasets (AUC) used to compare AutoGT with baselines.
We adopt two datasets with relatively small numbers of graphs (upper part) and one dataset with a
larger size (lower part) to demonstrate the efficiency of the proposed AutoGT.

Dataset #Graph #Class #Avg. Nodes #Avg. Edges # Node Feature # Edge Feature

OGBG-MolBACE 1,513 2 25.51 27.47 9 3
OGBG-MolBBBP 2,039 2 34.09 36.86 9 3

OGBG-MolHIV 41,127 2 24.06 25.95 9 3

C ADDITIONAL EXPERIMENTS

In Table 3, the results on COX2_MD and BZR_MD show larger standard deviations than other
datasets. One plausible reason is that the number of graphs of these two datasets are relatively small,
so that the results of the model can be sensitive to dataset splits. To obtain more convincing results on
these two datasets, we conduct additional experiments by still utilizing 10-fold cross-validation for all

13

Published as a conference paper at ICLR 2023

Table 8: Comparisons of AutoGT against state-of-the-art hand-crafted baselines. We report the
average accuracy (%) and the standard deviation on all the datasets.

Dataset COX2_MD BZR_MD

GIN 57.229.74 62.648.23

DGCNN 60.337.56 64.919.42

DiffPool 59.528.20 64.848.51

GraphSAGE 53.626.95 55.838.27

Graphormer 59.227.04 64.539.43

AutoGT(ours) 63.458.04 67.189.87

Table 9: Comparisons of AutoGT with the different number of supernets. We report the average
accuracy (%) and the standard deviation on the datasets.

Dataset PROTEINS

1 supernet 75.923.10

2 supernet 76.733.25

4 supernet 76.913.35

8 supernet 77.173.40

16 supernet 77.273.65

the baselines and our proposed method, and repeat the 10-fold cross-validation with 10 random seeds.
We report the results in Table 8. The results are consistent with Table 3, i.e., our method consistently
outperforms other baselines, while the standard deviations are considerably smaller by adopting more
repeated experiments.

In addition, to further explore how the number of supernets affects our proposed method, we carry out
experiments with 1, 2, 4, 8, 16 supernets on the PROTEINS dataset, and report our results in Table 9.
We can observe that as the number of subnets increases, the performance of our method increases. One
possible reason is that more well-trained subnets can bring more consistent performance estimation
results, which improves performance.

14

	Introduction
	Related Work
	Automated Graph Transformer Architecture Search (AutoGT)
	The Unified Graph Transformer Framework
	Basic Transformer
	Graph Encoding Strategy

	The Graph Transformer Search Space
	Transformer Architecture Space
	Graph Encoding Space

	Encoding-Aware Supernet Training
	Evolutionary Search

	Experiments
	Conclusion
	Training Procedure
	Dataset
	Additional Experiments

